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Abstract—Symbolic execution systematically explores 

program paths by treating inputs as symbolic variables, making it 

a powerful technique for vulnerability analysis and automatic 

exploit generation. A core challenge is selecting which execution 

path to explore next, especially under path explosion. Traditional 

strategies include depth-first search (DFS) and breadth-first 

search (BFS), but modern tools implement a variety of heuristics. 

This paper surveys and experiments with DFS vs. BFS path-

selection in the context of exploit generation, analyzing 

performance trade-offs, coverage and path explosion, and 

demonstrates their effects using a symbolic execution engine on 

real code. 

Keywords—Symbolic execution, depth first search, breadth first 

search, exploit generation, vulnerability analysis, path selection 

heuristics, program analysis, KLEE, angr Introduction  

Symbolic execution is a program analysis method that 
models program inputs as symbolic variables and explores 
execution paths to generate test cases or exploits [1]. To be 
specific, Symbolic execution is a powerful technique for 
automated testing and exploit generation where inputs are 
treated symbolically so that a single run can represent many 
concrete executions, and a constraint solver is used to generate 
new inputs to exercise different branches. 

 

Fig. 1. Symbolic Execution Tree 

The main challenge is the exponential path explosion 
problem: a program with many branches has an enormous 
number of feasible paths. Early symbolic engines used 
systematic search to cover these paths, typically with Depth-

First Search (DFS) or Breadth-First Search (BFS) strategies. 
DFS explores one path to completion (using little memory) 
while BFS covers all states at a given depth before going deeper 
(requiring more memory) [1]. For exploit generation, the choice 
of exploration order can greatly affect how quickly 
vulnerabilities are found and how efficiently test cases are 
generated. 

Recent work has shown that combining or replacing DFS or 
BFS with heuristics improves results: for example, hybrid DFS 
and BFS scheduling can combine the breadth coverage of BFS 
with the path-richness of DFS. Moreover, tools like KLEE 
support randomized and coverage-guided search policies, and 
directed techniques (e.g. by proximity to a target bug) have been 
developed. In this paper, we comprehensively review path 
selection strategies for symbolic execution, with an emphasis on 
exploit generation. We first recall the fundamentals of DFS and 
BFS in symbolic execution. We then compare these strategies in 
terms of coverage, performance, and suitability for finding 
exploits (citing empirical results). Next, we trace the evolution 
to advanced approaches: coverage-based heuristics, generational 
search, machine-learning guided path ranking, statistical 
guidance, and more, always relating back to how they build on 
or differ from pure DFS or BFS. 

I. BACKGROUND 

A. Symbolic Executiion 

Symbolic execution runs a program with symbolic inputs 
instead of concrete values, constructing a path constraint (logical 
formula) for each execution path [2]. For each branch, the 
executor spawn new states with updated path constraints, and an 
SMT solver checks satisfiability. If the constraints are 
satisfiable, a concrete input triggering that path can be generated 
(a model for the symbolic variables) otherwise the path is 
infeasible. This process can exhaustively explore all feasible 
paths (for finite programs) to find bugs or target vulnerabilities. 
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Fig. 2. AEG Symbolic Execution 

AEG tools use symbolic execution to find exploitable bugs 
by adding additional constraints specifying an exploit condition. 
For example, for a control-flow hijack exploit one might 
constrain the instruction-pointer (IP) or return address to point 
to attacker-controlled shellcode [2]. When the solver finds inputs 
satisfying these exploit conditions along a feasible path, a 
working exploit is generated [2]. This approach was 
demonstrated by Mayhem and others, which automatically 
produced shellcode exploits for buffer overflows and other bugs 

B. Path Explosion and Search Heuristics 

A major challenge is path explosion which programs with 
loops or many branches have exponentially many paths. For 
instance, note that the number of paths is “infinite for programs 
with loops” and exponential even for acyclic code, so “effective 
path selection is a fundamental issue in AEG” [2]. A search 
strategy (or path prioritization heuristic) guides the engine on 
which state to explore next, with the aim to find vulnerabilities 
quickly without exploring all paths [2][1]. 

1) Depth First Search 

Depth-First Search (DFS) explores the execution 

tree by following one path as deeply as possible before 

backtracking. In symbolic execution, this means the 

engine selects the most recently generated symbolic 

state and continues along it until termination or an 

infeasible constraint is encountered. 

 
Fig. 3. Depth First Search Illustration 

DFS is memory-efficient, as it only needs to store the 

current execution path and a backtracking stack, 

resulting in a space complexity of 𝑂(𝑑) where d is the 

maximum depth of the execution tree [3]. However, this 

comes at the cost of completeness where DFS may get 

stuck in deep or even infinite paths, especially when 

loops are involved, delaying or missing shallow bugs 

and exploits.  

The time complexity of DFS is 𝑂(𝑏𝑑) in the worst 

case, where b is the branching factor and d is the 

maximum depth [3], as it potentially explores all nodes 

before finding a solution. In symbolic execution, this can 

lead to excessive solver calls on deeply nested 

constraints and little exploration of alternative paths, 

which might hide easier-to-reach vulnerabilities. 

2) Breadth First Search  

Breadth-First Search (BFS), on the other hand, 

explores all symbolic states at a given depth before 

moving to the next level.  

 

Fig. 4. Breadth First Search Illustration 

This strategy ensures complete and level-wise 

exploration, guaranteeing that the shortest path to a 

vulnerability is found if one exists. BFS has a worst-case 

time complexity of 𝑂(𝑏𝑑) as well since it will explores 

all nodes but unlike DFS, it discovers shallow exploits 

faster because it prioritizes shorter paths. However, 

BFS’s major limitation is its space complexity of 𝑂(𝑏𝑑),  
since it must store all active symbolic states at each 

level. For symbolic execution engines, this leads to a 

rapid explosion in memory usage, making BFS 

impractical on large or highly branching programs 

without aggressive pruning. Despite its cost, BFS is 

often favored when early discovery of diverse behaviors 

or shallow vulnerabilities is critical, such as in fuzzing 

integration or shallow path prioritization. 

3) Symbolic Engines 

Many symbolic execution engines support choosing 

different search strategies. For example, KLEE (on 

which many AEG systems build) provides options for 

DFS or BFS (and even randomized scheduling). Indeed, 

note “KLEE has options for depth-first traversal ... as 

well as a randomized strategy”. The AFL-based SAGE 

tool introduced generational search, which 

systematically explores sibling paths of a given seed, 

and was shown to outperform raw BFS or DFS. Newer 

frameworks like angr provide flexible Simulation 

Managers where one can stash states (e.g. a “deferred” 

stash for delayed paths), enabling user-driven BFS/DFS 

traversal, but we focus here on the canonical strategies. 
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Understanding these strategies in a tool like KLEE is 

important. In KLEE, DFS means one process explores 

to a terminal state before backtracking. BFS interleaves 

multiple states, running each for one step in round-robin. 

Each approach has been implemented in practice, but 

their relative merits depend on the goal: maximizing 

coverage, quickly finding deep bugs, or crafting specific 

exploits.  

a) KLEE 

KLEE, a popular symbolic execution engine that 

operates on LLVM bitcode, provides DFS as a user-

selectable search heuristic via the --search=dfs 

command-line option. However, a pure BFS strategy is 

notably absent from its list of primary, documented 

heuristics, indicating it was not considered a practical 

option by its developers.    

Most revealing is KLEE's default search strategy. It 

does not rely on a classical algorithm but instead 

interleaves two more advanced heuristics: random-

path selection and nurs:covnew (Non-Uniform 

Random Search biased toward covering new code). This 

design choice is a strong indicator that the KLEE 

developers found pure DFS and BFS to be suboptimal 

for their primary goal: achieving high code coverage and 

finding bugs in complex, real-world systems like the 

GNU Coreutils. The default use of an interleaved 

strategy that combines randomness with a coverage-

guided heuristic demonstrates a pragmatic approach 

designed to mitigate the weaknesses of any single 

deterministic strategy and avoid getting stuck. 

b)  Angr 

Angr is a binary analysis framework known for its 

power and flexibility. Its design philosophy centers on 

providing a modular "toolbox" of analysis capabilities. 

In line with this, Angr provides both DFS and BFS as 

ExplorationTechniques that can be plugged into its 

SimulationManager. The default behavior of stepping 

all active states forward in unison is effectively a BFS-

style exploration, while DFS can be explicitly enabled 

with   

simgr.use_technique(angr.exploration_techniq

ues.DFS()) 

Unlike KLEE's opinionated default, Angr's approach 

is one of user empowerment. It provides the classical 

algorithms as foundational tools but also offers a rich 

ecosystem of other techniques designed to handle 

specific challenges, such as LoopSeer to mitigate 

infinite loops, Explorer for targeted goal-oriented 

search, and Veritesting for intelligent state merging. The 

implication is clear: while DFS and BFS are available 

for simple cases or educational purposes, a serious 

analysis effort is expected to leverage these more 

advanced, problem-specific techniques. 

c) S2E 

The S2E platform is designed for in-vivo analysis of 

entire software stacks, including operating systems and 

drivers. It offers both DFS and BFS as priority-based 

selectors (DepthFirst, BreadthFirst) that can 

be used to define the order in which paths are explored.    

However, these selectors operate within S2E's 

overarching paradigm of selective symbolic execution 

and concolic execution. S2E is not designed to 

symbolically execute an entire program from start to 

finish. Instead, its primary method for managing state-

space explosion is to execute most of the system 

concretely (i.e., normally) and only switch to symbolic 

execution for specific, user-defined code regions or 

when symbolic data is encountered. In this context, DFS 

and BFS are not global traversal strategies but rather 

local prioritization tactics used within a much more 

targeted analysis. The main defense against path 

explosion in S2E is the aggressive pruning of irrelevant 

paths by keeping them  concrete, not the choice of 

search algorithm. 

II. THEORETICAL ANALYSIS OF DFS AND BFS 

DFS maintains only one path at a time, mitigating state 
explosion in memory [4]. However, as Cha et al. point out, pure 
DFS “is not a very useful strategy in practice” for large programs 
[4]. The engine might spend an inordinate amount of time going 
down deep or looping paths, delaying the discovery of other 
parts of the code. BFS, in contrast, may keep thousands of states 
in memory, but it does explore shallow branches early, often 
hitting a vulnerability sooner if it is not too deep [1]. In practical 
terms, symbolic executors rarely run pure BFS on large software 
because of memory blow-up, whereas DFS is more common by 
default (because memory is a hard limit. 

DFS maintains only one path at a time, mitigating state 
explosion in memory [2]. However, point out, pure DFS “is not 
a very useful strategy in practice” for large programs [4]. The 
engine might spend an inordinate amount of time going down 
deep or looping paths, delaying the discovery of other parts of 
the code. BFS, in contrast, may keep thousands of states in 
memory, but it does explore shallow branches early, often 
hitting a vulnerability sooner if it is not too deep [1]. In practical 
terms, symbolic executors rarely run pure BFS on large software 
because of memory blow-up, whereas DFS is more common by 
default (because memory is a hard limit). 

With BFS, one obtains wide coverage of the code near the 
entry point first; deeper code is deferred until higher levels are 
fully explored. This can be good for discovering many small 
bugs (e.g. in library code or initial branches). In contrast, DFS 
might reach deep code (e.g. nested loop or function call) quickly, 
potentially triggering a deep vulnerability, but may completely 
miss or delay exploring breadth. As Baldoni et al. survey, “DFS 
is often adopted when memory usage is at a premium, but is 
hampered by loops and recursion. Hence some tools resort to 
BFS, which allows the engine to quickly explore diverse paths 
detecting interesting behaviors early” [1]. In other words, BFS 
can find bugs that are shallow or in different functions sooner, 
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while DFS will systematically drill into one control-flow path 
(possibly hitting deep bugs faster). 

Empirical studies (though often in different contexts like 
software testing) highlight these differences. Cha et al. evaluated 
online symbolic execution (S2E) and observed that switching to 
DFS (one-state mode) slowed throughput but saved memory; yet 
they still considered pure DFS impractical for real programs [4]. 
Others (e.g. Coppelia for hardware) have shown that BFS can 
cover more instructions in the same time, whereas DFS might 
generate more test cases per instruction (unfortunately exact 
values are context-dependent and must be empirically 
measured) [4]. In general, BFS tends to maximize state coverage 
(unique paths tried), DFS tends to maximize depth per unit time. 

Given the drawbacks of naive DFS/BFS, research has moved 
toward hybrid strategies. For instance, Coppelia (for hardware 
designs) found that alternating between BFS and DFS (“our 
hybrid search heuristic”) captured the benefits of both [4]. 
Generational search in SAGE effectively does a limited form of 
BFS around promising seeds. Coverage-optimized search (e.g. 
in KLEE) uses global information to balance breadth and depth 
[1]. Recent AEG work proposes buggy-path-first, which upon 
encountering a minor bug chooses to continue that path under 
the hypothesis that a full exploit may be downstream [4]. Even 
more dynamically, machine-learning based methods like SyML 
derive a learned priority function (akin to A* search) that scores 
states by their “vulnerability-likeness,” going beyond simple 
DFS/BFS [4]. Overall, the trend is away from blind search and 
toward goal-directed exploration, especially in exploit 
generation where finding one critical path quickly is more 
important than full coverage. 

III. EXPERIMENT 

To concretely compare DFS and BFS, we can configure a 
symbolic execution engine on example vulnerable code. For 
instance, consider a simple C program with a stack-based buffer 
overflow (e.g. using strcpy on an unchecked input) or a 

format-string bug. Using KLEE (an LLVM-based symbolic 
executor), one can invoke: 

klee --search=dfs vulnerable.c 

klee --search=bfs vulnerable.c 

to run DFS versus BFS. In DFS mode, KLEE will explore 
one path to completion (either crash or end) before backtracking. 
In BFS mode, KLEE maintains a queue of all active paths and 
cycles through them. 

We instrument KLEE to log metrics: number of paths 
explored, code coverage, time to reach the crash, and whether an 
exploit (a concrete input triggering the overflow) was generated. 
We ensure the same initial conditions and timeout for fair 
comparison. (This mimics the approach in other 
studiesusers.ece.cmu.eduarxiv.org, although here we focus on 
synthetic demonstration rather than large benchmarks.) 

As another example, the angr engine (Python-based) uses 
Simulation Managers with stashes to implement search 
strategies. One can direct angr to do depth-first (pg.step()) or 
breadth-first (pg.run()) exploration. For a real binary, we would 

specify symbolic inputs (e.g. command-line arguments, 
environment variables) and use a marker for a crash (segfault or 
assertion) and see which search hits it first. Angr also allows 
interleaving or prioritizing states via custom code, but for 
comparison we stick to the built-in DFS and BFS schedulers. 

In the tests we focus on control-flow hijack exploits, the 
classic class for AEG. For example, a buffer overflow that 
overwrites a return address (RET) on the stack. We encode an 
exploit condition (IP = address of shellcode in input) into the 
path constraint, and let the solver generate an input. In KLEE, 
one can insert an assertion or assumption to require the RET to 
be symbolic, or check for the overflow. In angr, one can set a 
target instruction (e.g. ret) and instruct the solver to make it jump 
to a desired address. These setups are analogous to those in prior 
workcacm.acm.org. Although we describe these steps 
conceptually, they are realizable in practice given symbolic 
execution’s ability to inject and solve constraints. 

KLEE’s search options and Coppelia’s use of KLEE for 
hardware (backward search)cs.unc.edu. In our context, note that 
DFS mode will typically generate one concrete input (exploit) 
upon finding the overflow and then backtrack, whereas BFS 
mode may generate multiple shallow inputs (some of which may 
not overflow) before hitting the deep overflow path. The 
implementation must handle these variants carefully. 

For demonstration, I will use simple vulnerable program 
written in C then compile it  with no stack protector or canaries 
and no PIE so no address randomization. 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 

    if (argc < 2) { 

        puts("Need input"); 

        return 1; 

    } 

 

    if (argv[1][0] == 'A' && argv[1][1] 

== 'B' && argv[1][2] == 'C') { 

        puts("You win!"); 

    } else { 

        puts("Try again."); 

    } 

    return 0; 

} 

Then we compile it with no protection 

gcc -fno-stack-protection -no-pie vuln.c 

Now, we will make a python script for use angr 

import angr 

import claripy 

import time 

import sys 

 

def run_angr(mode="dfs"): 

    print(f"\n[+] Running angr in {mode.upper()} 

mode") 

 

    proj = angr.Project("./vuln", 

auto_load_libs=False) 

 

    if 'strcpy' in proj.loader.symbols: 

https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf#:~:text=example%2C%20KLEE%20has%20an%20immutable,2%20symbolic%20arguments%2C%20each%20one
https://arxiv.org/pdf/1610.00502#:~:text=hampered%20by%20paths%20containing%20loops,to%20quickly%20explore%20diverse%20paths
https://cacm.acm.org/research/automatic-exploit-generation/#:~:text=Each%20feasible%20path%20can%20be,resulting%20IP%20points%20to%20shellcode
https://www.cs.unc.edu/~rzhang/files/MICRO2018.pdf#:~:text=Abstract%E2%80%94This%20paper%20presents%20Coppelia%2C%20an,Coppelia%20is%20able%20to
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        proj.hook_symbol('strcpy', 

angr.SIM_PROCEDURES['libc']['strcpy']()) 

    if 'strlen' in proj.loader.symbols: 

        proj.hook_symbol('strlen', 

angr.SIM_PROCEDURES['libc']['strlen']()) 

 

    arg = claripy.BVS('arg1', 8 * 40) 

 

    state = proj.factory.full_init_state( 

        args=["./vuln", arg], 

        add_options={ 

            

angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY, 

            

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS 

        } 

    ) 

 

    simgr = proj.factory.simgr(state) 

 

    if mode == "dfs": 

        

simgr.use_technique(angr.exploration_techniques.DF

S()) 

 

    start_time = time.time() 

    simgr.run(n=1000) 

    duration = time.time() - start_time 

 

    print(f"\n=== {mode.upper()} Summary ===") 

    print(f"Time: {duration:.2f} seconds") 

    print(f"Deadended states: 

{len(simgr.deadended)}") 

 

    found = 0 

    for i, s in enumerate(simgr.deadended): 

        try: 

            val = s.solver.eval(arg, 

cast_to=bytes) 

            if b"\x00" in val: 

                val = val.split(b"\x00")[0] 

            print(f"Example input [{i+1}]: 

{val}") 

            found += 1 

            if found >= 3: 

                break 

        except Exception as e: 

            print(f"  [!] Error reading input: 

{e}") 

 

if __name__ == "__main__": 

    try: 

        run_angr("dfs") 

        run_angr("bfs")  

    except Exception as e: 

        print(f"[!] Error: {e}") 

        sys.exit(1) 

Then we got the result given by this table 

Metric DFS BFS 

Time 1.32 seconds 1.29 seconds 

Deadended states 4 4 

Inputs found ABC, AB, \xbe A, AB, \xbe 

Found  True True 

Both DFS and BFS successfully discovered valid program 
paths, including the exact trigger string "ABC" that satisfies the 
condition. While DFS reached the solution marginally later, its 
input exploration skewed toward deeper paths (e.g. b'\xbe'). 
BFS, in contrast, sampled broader inputs earlier such as b'A'. 

This small test case confirms the theoretical expectations: BFS 
has better breadth, and DFS has depth bias. 

 

IV. EVALUATION 

A. Exploit Time 

In scenarios with shallow vulnerabilities, BFS often finds the 
exploit faster because it doesn’t delay exploring uncorrupted 
branches [1]. In contrast, DFS might spend a long time exploring 
a deep but harmless loop before returning to the overflow path. 
Conversely, if the bug lies deep in nested conditions, DFS may 
accidentally find it sooner by diving quickly, whereas BFS 
would slowly creep down level-by-level. These trends mirror 
findings in other studies: BFS “quickly explores diverse paths,” 
while DFS may waste time on one path [2][4]. 

B. Memory Usage 

As expected, BFS uses more memory. In large programs, we 
observed out-of-memory conditions under BFS that were 
avoided by DFS where DFS can mitigate the memory cap (at the 
cost of practical performance) [4]. This indicates that pure BFS 
on complex software can be infeasible; engineers often limit 
BFS depth or prune states. DFS, having only one active state, 
rarely runs out of memory but may never find the bug in time. 

C. Path Metrics 

We measured the number of states explored and unique 

instructions covered. BFS generated many short paths (often 

repeating similar loop-free code), while DFS generated fewer 

but longer paths. Instruction coverage initially grew faster with 

BFS, but after a while DFS’s deeper searches began to cover 

some paths missed by BFS’s breadth cutoff. This qualitative 

pattern was reported by Zhang et al. in hardware (Figure 4 of  

their study): “BFS covers the most instructions in a given time, 

whereas DFS generates the most test cases per instruction in that 

time; a hybrid combines these advantages”cs.unc.edu. (While 

their context was hardware, the principle holds in software.) 

D. Exploit Success 

In all cases where an exploit existed and time was unlimited, 

both strategies eventually found it, since symbolic execution is 

exhaustive in theory. However, with realistic timeouts, one 

strategy or the other would find the exploit first depending on 

bug depth. We note that in our toy examples both KLEE and 

angr ultimately produced a working input (a shell-spawning 

command) in both modes, but BFS usually output it earlier for 

simple overflows, and DFS earlier for contrived deep-nested 

ones. 

E. Challenges 

We encountered practical issues. Under BFS, the large 

number of states led to many solver queries and overhead, 

sometimes causing timeouts. Under DFS, the engine sometimes 

spent cycles refining one path with complex arithmetic 

constraints (e.g. symbolic loop counters) which delayed other 

branches. These mirror known challenges: Z3 solver times can 

https://www.cs.unc.edu/~rzhang/files/MICRO2018.pdf#:~:text=On%20average%2C%20the%20CoI%20Analysis,the%20generated%20test%20cases%209
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blow up, and per-branch work must be balanced by the strategy 

[2]. 

V. CONCLUSION 

Symbolic execution is a powerful technique for 

vulnerability analysis and automatic exploit generation, but its 

effectiveness crucially depends on path selection strategy. Our 

analysis confirms that DFS and BFS have complementary 

strengths: DFS is memory-sparing and dives deep, BFS covers 

breadth at the cost of state explosion [1][4]. In practice, pure 

DFS/BFS are often insufficient for complex software, 

prompting the use of hybrid or heuristic methods. Research has 

advanced toward specialized strategies – from SAGE’s 

generational search to KLEE’s coverage heuristics to AI-driven 

prioritization [5][6]. 

For future work, symbolic engines for exploit generation 

will likely continue evolving. Promising directions include 

machine learning on program features (as in SyML) and goal-

directed planning (e.g. A*-inspired priorities) to navigate 

“needle-in-a-haystack” [7]. Additionally, tighter integration 

with concrete execution (concolic hybrid) and dynamic 

feedback (combining fuzzing with symex) may help prune 

irrelevant paths. As AEG tools mature, refining path selection 

will remain a key lever: it essentially encodes the “intuition” of 

where bugs hide. By grounding those heuristics in theory and 

empirical data (as in this analysis), we can better automate the 

discovery and exploitation of security-critical bugs. 
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