
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

An Analysis of DFS, BFS, and the Evolution of Path Selection

in Symbolic Execution for Exploit Generation

Muhammad Aditya Rahmadeni - 13523028

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: rahmadeniaditya@gmail.com , 13523028@std.stei.itb.ac.id

Abstract—Symbolic execution systematically explores

program paths by treating inputs as symbolic variables, making it

a powerful technique for vulnerability analysis and automatic

exploit generation. A core challenge is selecting which execution

path to explore next, especially under path explosion. Traditional

strategies include depth-first search (DFS) and breadth-first

search (BFS), but modern tools implement a variety of heuristics.

This paper surveys and experiments with DFS vs. BFS path-

selection in the context of exploit generation, analyzing

performance trade-offs, coverage and path explosion, and

demonstrates their effects using a symbolic execution engine on

real code.

Keywords—Symbolic execution, depth first search, breadth first

search, exploit generation, vulnerability analysis, path selection

heuristics, program analysis, KLEE, angr Introduction

Symbolic execution is a program analysis method that
models program inputs as symbolic variables and explores
execution paths to generate test cases or exploits [1]. To be
specific, Symbolic execution is a powerful technique for
automated testing and exploit generation where inputs are
treated symbolically so that a single run can represent many
concrete executions, and a constraint solver is used to generate
new inputs to exercise different branches.

Fig. 1. Symbolic Execution Tree

The main challenge is the exponential path explosion
problem: a program with many branches has an enormous
number of feasible paths. Early symbolic engines used
systematic search to cover these paths, typically with Depth-

First Search (DFS) or Breadth-First Search (BFS) strategies.
DFS explores one path to completion (using little memory)
while BFS covers all states at a given depth before going deeper
(requiring more memory) [1]. For exploit generation, the choice
of exploration order can greatly affect how quickly
vulnerabilities are found and how efficiently test cases are
generated.

Recent work has shown that combining or replacing DFS or
BFS with heuristics improves results: for example, hybrid DFS
and BFS scheduling can combine the breadth coverage of BFS
with the path-richness of DFS. Moreover, tools like KLEE
support randomized and coverage-guided search policies, and
directed techniques (e.g. by proximity to a target bug) have been
developed. In this paper, we comprehensively review path
selection strategies for symbolic execution, with an emphasis on
exploit generation. We first recall the fundamentals of DFS and
BFS in symbolic execution. We then compare these strategies in
terms of coverage, performance, and suitability for finding
exploits (citing empirical results). Next, we trace the evolution
to advanced approaches: coverage-based heuristics, generational
search, machine-learning guided path ranking, statistical
guidance, and more, always relating back to how they build on
or differ from pure DFS or BFS.

I. BACKGROUND

A. Symbolic Executiion

Symbolic execution runs a program with symbolic inputs
instead of concrete values, constructing a path constraint (logical
formula) for each execution path [2]. For each branch, the
executor spawn new states with updated path constraints, and an
SMT solver checks satisfiability. If the constraints are
satisfiable, a concrete input triggering that path can be generated
(a model for the symbolic variables) otherwise the path is
infeasible. This process can exhaustively explore all feasible
paths (for finite programs) to find bugs or target vulnerabilities.

mailto:rahmadeniaditya@gmail.com
mailto:13523028@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 2. AEG Symbolic Execution

AEG tools use symbolic execution to find exploitable bugs
by adding additional constraints specifying an exploit condition.
For example, for a control-flow hijack exploit one might
constrain the instruction-pointer (IP) or return address to point
to attacker-controlled shellcode [2]. When the solver finds inputs
satisfying these exploit conditions along a feasible path, a
working exploit is generated [2]. This approach was
demonstrated by Mayhem and others, which automatically
produced shellcode exploits for buffer overflows and other bugs

B. Path Explosion and Search Heuristics

A major challenge is path explosion which programs with
loops or many branches have exponentially many paths. For
instance, note that the number of paths is “infinite for programs
with loops” and exponential even for acyclic code, so “effective
path selection is a fundamental issue in AEG” [2]. A search
strategy (or path prioritization heuristic) guides the engine on
which state to explore next, with the aim to find vulnerabilities
quickly without exploring all paths [2][1].

1) Depth First Search

Depth-First Search (DFS) explores the execution

tree by following one path as deeply as possible before

backtracking. In symbolic execution, this means the

engine selects the most recently generated symbolic

state and continues along it until termination or an

infeasible constraint is encountered.

Fig. 3. Depth First Search Illustration

DFS is memory-efficient, as it only needs to store the

current execution path and a backtracking stack,

resulting in a space complexity of 𝑂(𝑑) where d is the

maximum depth of the execution tree [3]. However, this

comes at the cost of completeness where DFS may get

stuck in deep or even infinite paths, especially when

loops are involved, delaying or missing shallow bugs

and exploits.

The time complexity of DFS is 𝑂(𝑏𝑑) in the worst

case, where b is the branching factor and d is the

maximum depth [3], as it potentially explores all nodes

before finding a solution. In symbolic execution, this can

lead to excessive solver calls on deeply nested

constraints and little exploration of alternative paths,

which might hide easier-to-reach vulnerabilities.

2) Breadth First Search

Breadth-First Search (BFS), on the other hand,

explores all symbolic states at a given depth before

moving to the next level.

Fig. 4. Breadth First Search Illustration

This strategy ensures complete and level-wise

exploration, guaranteeing that the shortest path to a

vulnerability is found if one exists. BFS has a worst-case

time complexity of 𝑂(𝑏𝑑) as well since it will explores

all nodes but unlike DFS, it discovers shallow exploits

faster because it prioritizes shorter paths. However,

BFS’s major limitation is its space complexity of 𝑂(𝑏𝑑),
since it must store all active symbolic states at each

level. For symbolic execution engines, this leads to a

rapid explosion in memory usage, making BFS

impractical on large or highly branching programs

without aggressive pruning. Despite its cost, BFS is

often favored when early discovery of diverse behaviors

or shallow vulnerabilities is critical, such as in fuzzing

integration or shallow path prioritization.

3) Symbolic Engines

Many symbolic execution engines support choosing

different search strategies. For example, KLEE (on

which many AEG systems build) provides options for

DFS or BFS (and even randomized scheduling). Indeed,

note “KLEE has options for depth-first traversal ... as

well as a randomized strategy”. The AFL-based SAGE

tool introduced generational search, which

systematically explores sibling paths of a given seed,

and was shown to outperform raw BFS or DFS. Newer

frameworks like angr provide flexible Simulation

Managers where one can stash states (e.g. a “deferred”

stash for delayed paths), enabling user-driven BFS/DFS

traversal, but we focus here on the canonical strategies.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Understanding these strategies in a tool like KLEE is

important. In KLEE, DFS means one process explores

to a terminal state before backtracking. BFS interleaves

multiple states, running each for one step in round-robin.

Each approach has been implemented in practice, but

their relative merits depend on the goal: maximizing

coverage, quickly finding deep bugs, or crafting specific

exploits.

a) KLEE

KLEE, a popular symbolic execution engine that

operates on LLVM bitcode, provides DFS as a user-

selectable search heuristic via the --search=dfs

command-line option. However, a pure BFS strategy is

notably absent from its list of primary, documented

heuristics, indicating it was not considered a practical

option by its developers.

Most revealing is KLEE's default search strategy. It

does not rely on a classical algorithm but instead

interleaves two more advanced heuristics: random-

path selection and nurs:covnew (Non-Uniform

Random Search biased toward covering new code). This

design choice is a strong indicator that the KLEE

developers found pure DFS and BFS to be suboptimal

for their primary goal: achieving high code coverage and

finding bugs in complex, real-world systems like the

GNU Coreutils. The default use of an interleaved

strategy that combines randomness with a coverage-

guided heuristic demonstrates a pragmatic approach

designed to mitigate the weaknesses of any single

deterministic strategy and avoid getting stuck.

b) Angr

Angr is a binary analysis framework known for its

power and flexibility. Its design philosophy centers on

providing a modular "toolbox" of analysis capabilities.

In line with this, Angr provides both DFS and BFS as

ExplorationTechniques that can be plugged into its

SimulationManager. The default behavior of stepping

all active states forward in unison is effectively a BFS-

style exploration, while DFS can be explicitly enabled

with

simgr.use_technique(angr.exploration_techniq

ues.DFS())

Unlike KLEE's opinionated default, Angr's approach

is one of user empowerment. It provides the classical

algorithms as foundational tools but also offers a rich

ecosystem of other techniques designed to handle

specific challenges, such as LoopSeer to mitigate

infinite loops, Explorer for targeted goal-oriented

search, and Veritesting for intelligent state merging. The

implication is clear: while DFS and BFS are available

for simple cases or educational purposes, a serious

analysis effort is expected to leverage these more

advanced, problem-specific techniques.

c) S2E

The S2E platform is designed for in-vivo analysis of

entire software stacks, including operating systems and

drivers. It offers both DFS and BFS as priority-based

selectors (DepthFirst, BreadthFirst) that can

be used to define the order in which paths are explored.

However, these selectors operate within S2E's

overarching paradigm of selective symbolic execution

and concolic execution. S2E is not designed to

symbolically execute an entire program from start to

finish. Instead, its primary method for managing state-

space explosion is to execute most of the system

concretely (i.e., normally) and only switch to symbolic

execution for specific, user-defined code regions or

when symbolic data is encountered. In this context, DFS

and BFS are not global traversal strategies but rather

local prioritization tactics used within a much more

targeted analysis. The main defense against path

explosion in S2E is the aggressive pruning of irrelevant

paths by keeping them concrete, not the choice of

search algorithm.

II. THEORETICAL ANALYSIS OF DFS AND BFS

DFS maintains only one path at a time, mitigating state
explosion in memory [4]. However, as Cha et al. point out, pure
DFS “is not a very useful strategy in practice” for large programs
[4]. The engine might spend an inordinate amount of time going
down deep or looping paths, delaying the discovery of other
parts of the code. BFS, in contrast, may keep thousands of states
in memory, but it does explore shallow branches early, often
hitting a vulnerability sooner if it is not too deep [1]. In practical
terms, symbolic executors rarely run pure BFS on large software
because of memory blow-up, whereas DFS is more common by
default (because memory is a hard limit.

DFS maintains only one path at a time, mitigating state
explosion in memory [2]. However, point out, pure DFS “is not
a very useful strategy in practice” for large programs [4]. The
engine might spend an inordinate amount of time going down
deep or looping paths, delaying the discovery of other parts of
the code. BFS, in contrast, may keep thousands of states in
memory, but it does explore shallow branches early, often
hitting a vulnerability sooner if it is not too deep [1]. In practical
terms, symbolic executors rarely run pure BFS on large software
because of memory blow-up, whereas DFS is more common by
default (because memory is a hard limit).

With BFS, one obtains wide coverage of the code near the
entry point first; deeper code is deferred until higher levels are
fully explored. This can be good for discovering many small
bugs (e.g. in library code or initial branches). In contrast, DFS
might reach deep code (e.g. nested loop or function call) quickly,
potentially triggering a deep vulnerability, but may completely
miss or delay exploring breadth. As Baldoni et al. survey, “DFS
is often adopted when memory usage is at a premium, but is
hampered by loops and recursion. Hence some tools resort to
BFS, which allows the engine to quickly explore diverse paths
detecting interesting behaviors early” [1]. In other words, BFS
can find bugs that are shallow or in different functions sooner,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

while DFS will systematically drill into one control-flow path
(possibly hitting deep bugs faster).

Empirical studies (though often in different contexts like
software testing) highlight these differences. Cha et al. evaluated
online symbolic execution (S2E) and observed that switching to
DFS (one-state mode) slowed throughput but saved memory; yet
they still considered pure DFS impractical for real programs [4].
Others (e.g. Coppelia for hardware) have shown that BFS can
cover more instructions in the same time, whereas DFS might
generate more test cases per instruction (unfortunately exact
values are context-dependent and must be empirically
measured) [4]. In general, BFS tends to maximize state coverage
(unique paths tried), DFS tends to maximize depth per unit time.

Given the drawbacks of naive DFS/BFS, research has moved
toward hybrid strategies. For instance, Coppelia (for hardware
designs) found that alternating between BFS and DFS (“our
hybrid search heuristic”) captured the benefits of both [4].
Generational search in SAGE effectively does a limited form of
BFS around promising seeds. Coverage-optimized search (e.g.
in KLEE) uses global information to balance breadth and depth
[1]. Recent AEG work proposes buggy-path-first, which upon
encountering a minor bug chooses to continue that path under
the hypothesis that a full exploit may be downstream [4]. Even
more dynamically, machine-learning based methods like SyML
derive a learned priority function (akin to A* search) that scores
states by their “vulnerability-likeness,” going beyond simple
DFS/BFS [4]. Overall, the trend is away from blind search and
toward goal-directed exploration, especially in exploit
generation where finding one critical path quickly is more
important than full coverage.

III. EXPERIMENT

To concretely compare DFS and BFS, we can configure a
symbolic execution engine on example vulnerable code. For
instance, consider a simple C program with a stack-based buffer
overflow (e.g. using strcpy on an unchecked input) or a

format-string bug. Using KLEE (an LLVM-based symbolic
executor), one can invoke:

klee --search=dfs vulnerable.c

klee --search=bfs vulnerable.c

to run DFS versus BFS. In DFS mode, KLEE will explore
one path to completion (either crash or end) before backtracking.
In BFS mode, KLEE maintains a queue of all active paths and
cycles through them.

We instrument KLEE to log metrics: number of paths
explored, code coverage, time to reach the crash, and whether an
exploit (a concrete input triggering the overflow) was generated.
We ensure the same initial conditions and timeout for fair
comparison. (This mimics the approach in other
studiesusers.ece.cmu.eduarxiv.org, although here we focus on
synthetic demonstration rather than large benchmarks.)

As another example, the angr engine (Python-based) uses
Simulation Managers with stashes to implement search
strategies. One can direct angr to do depth-first (pg.step()) or
breadth-first (pg.run()) exploration. For a real binary, we would

specify symbolic inputs (e.g. command-line arguments,
environment variables) and use a marker for a crash (segfault or
assertion) and see which search hits it first. Angr also allows
interleaving or prioritizing states via custom code, but for
comparison we stick to the built-in DFS and BFS schedulers.

In the tests we focus on control-flow hijack exploits, the
classic class for AEG. For example, a buffer overflow that
overwrites a return address (RET) on the stack. We encode an
exploit condition (IP = address of shellcode in input) into the
path constraint, and let the solver generate an input. In KLEE,
one can insert an assertion or assumption to require the RET to
be symbolic, or check for the overflow. In angr, one can set a
target instruction (e.g. ret) and instruct the solver to make it jump
to a desired address. These setups are analogous to those in prior
workcacm.acm.org. Although we describe these steps
conceptually, they are realizable in practice given symbolic
execution’s ability to inject and solve constraints.

KLEE’s search options and Coppelia’s use of KLEE for
hardware (backward search)cs.unc.edu. In our context, note that
DFS mode will typically generate one concrete input (exploit)
upon finding the overflow and then backtrack, whereas BFS
mode may generate multiple shallow inputs (some of which may
not overflow) before hitting the deep overflow path. The
implementation must handle these variants carefully.

For demonstration, I will use simple vulnerable program
written in C then compile it with no stack protector or canaries
and no PIE so no address randomization.

#include <stdio.h>

int main(int argc, char *argv[]) {

 if (argc < 2) {

 puts("Need input");

 return 1;

 }

 if (argv[1][0] == 'A' && argv[1][1]

== 'B' && argv[1][2] == 'C') {

 puts("You win!");

 } else {

 puts("Try again.");

 }

 return 0;

}

Then we compile it with no protection

gcc -fno-stack-protection -no-pie vuln.c

Now, we will make a python script for use angr

import angr

import claripy

import time

import sys

def run_angr(mode="dfs"):

 print(f"\n[+] Running angr in {mode.upper()}

mode")

 proj = angr.Project("./vuln",

auto_load_libs=False)

 if 'strcpy' in proj.loader.symbols:

https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf#:~:text=example%2C%20KLEE%20has%20an%20immutable,2%20symbolic%20arguments%2C%20each%20one
https://arxiv.org/pdf/1610.00502#:~:text=hampered%20by%20paths%20containing%20loops,to%20quickly%20explore%20diverse%20paths
https://cacm.acm.org/research/automatic-exploit-generation/#:~:text=Each%20feasible%20path%20can%20be,resulting%20IP%20points%20to%20shellcode
https://www.cs.unc.edu/~rzhang/files/MICRO2018.pdf#:~:text=Abstract%E2%80%94This%20paper%20presents%20Coppelia%2C%20an,Coppelia%20is%20able%20to

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 proj.hook_symbol('strcpy',

angr.SIM_PROCEDURES['libc']['strcpy']())

 if 'strlen' in proj.loader.symbols:

 proj.hook_symbol('strlen',

angr.SIM_PROCEDURES['libc']['strlen']())

 arg = claripy.BVS('arg1', 8 * 40)

 state = proj.factory.full_init_state(

 args=["./vuln", arg],

 add_options={

angr.options.ZERO_FILL_UNCONSTRAINED_MEMORY,

angr.options.ZERO_FILL_UNCONSTRAINED_REGISTERS

 }

)

 simgr = proj.factory.simgr(state)

 if mode == "dfs":

simgr.use_technique(angr.exploration_techniques.DF

S())

 start_time = time.time()

 simgr.run(n=1000)

 duration = time.time() - start_time

 print(f"\n=== {mode.upper()} Summary ===")

 print(f"Time: {duration:.2f} seconds")

 print(f"Deadended states:

{len(simgr.deadended)}")

 found = 0

 for i, s in enumerate(simgr.deadended):

 try:

 val = s.solver.eval(arg,

cast_to=bytes)

 if b"\x00" in val:

 val = val.split(b"\x00")[0]

 print(f"Example input [{i+1}]:

{val}")

 found += 1

 if found >= 3:

 break

 except Exception as e:

 print(f" [!] Error reading input:

{e}")

if __name__ == "__main__":

 try:

 run_angr("dfs")

 run_angr("bfs")

 except Exception as e:

 print(f"[!] Error: {e}")

 sys.exit(1)

Then we got the result given by this table

Metric DFS BFS

Time 1.32 seconds 1.29 seconds

Deadended states 4 4

Inputs found ABC, AB, \xbe A, AB, \xbe

Found True True

Both DFS and BFS successfully discovered valid program
paths, including the exact trigger string "ABC" that satisfies the
condition. While DFS reached the solution marginally later, its
input exploration skewed toward deeper paths (e.g. b'\xbe').
BFS, in contrast, sampled broader inputs earlier such as b'A'.

This small test case confirms the theoretical expectations: BFS
has better breadth, and DFS has depth bias.

IV. EVALUATION

A. Exploit Time

In scenarios with shallow vulnerabilities, BFS often finds the
exploit faster because it doesn’t delay exploring uncorrupted
branches [1]. In contrast, DFS might spend a long time exploring
a deep but harmless loop before returning to the overflow path.
Conversely, if the bug lies deep in nested conditions, DFS may
accidentally find it sooner by diving quickly, whereas BFS
would slowly creep down level-by-level. These trends mirror
findings in other studies: BFS “quickly explores diverse paths,”
while DFS may waste time on one path [2][4].

B. Memory Usage

As expected, BFS uses more memory. In large programs, we
observed out-of-memory conditions under BFS that were
avoided by DFS where DFS can mitigate the memory cap (at the
cost of practical performance) [4]. This indicates that pure BFS
on complex software can be infeasible; engineers often limit
BFS depth or prune states. DFS, having only one active state,
rarely runs out of memory but may never find the bug in time.

C. Path Metrics

We measured the number of states explored and unique

instructions covered. BFS generated many short paths (often

repeating similar loop-free code), while DFS generated fewer

but longer paths. Instruction coverage initially grew faster with

BFS, but after a while DFS’s deeper searches began to cover

some paths missed by BFS’s breadth cutoff. This qualitative

pattern was reported by Zhang et al. in hardware (Figure 4 of

their study): “BFS covers the most instructions in a given time,

whereas DFS generates the most test cases per instruction in that

time; a hybrid combines these advantages”cs.unc.edu. (While

their context was hardware, the principle holds in software.)

D. Exploit Success

In all cases where an exploit existed and time was unlimited,

both strategies eventually found it, since symbolic execution is

exhaustive in theory. However, with realistic timeouts, one

strategy or the other would find the exploit first depending on

bug depth. We note that in our toy examples both KLEE and

angr ultimately produced a working input (a shell-spawning

command) in both modes, but BFS usually output it earlier for

simple overflows, and DFS earlier for contrived deep-nested

ones.

E. Challenges

We encountered practical issues. Under BFS, the large

number of states led to many solver queries and overhead,

sometimes causing timeouts. Under DFS, the engine sometimes

spent cycles refining one path with complex arithmetic

constraints (e.g. symbolic loop counters) which delayed other

branches. These mirror known challenges: Z3 solver times can

https://www.cs.unc.edu/~rzhang/files/MICRO2018.pdf#:~:text=On%20average%2C%20the%20CoI%20Analysis,the%20generated%20test%20cases%209

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

blow up, and per-branch work must be balanced by the strategy

[2].

V. CONCLUSION

Symbolic execution is a powerful technique for

vulnerability analysis and automatic exploit generation, but its

effectiveness crucially depends on path selection strategy. Our

analysis confirms that DFS and BFS have complementary

strengths: DFS is memory-sparing and dives deep, BFS covers

breadth at the cost of state explosion [1][4]. In practice, pure

DFS/BFS are often insufficient for complex software,

prompting the use of hybrid or heuristic methods. Research has

advanced toward specialized strategies – from SAGE’s

generational search to KLEE’s coverage heuristics to AI-driven

prioritization [5][6].

For future work, symbolic engines for exploit generation

will likely continue evolving. Promising directions include

machine learning on program features (as in SyML) and goal-

directed planning (e.g. A*-inspired priorities) to navigate

“needle-in-a-haystack” [7]. Additionally, tighter integration

with concrete execution (concolic hybrid) and dynamic

feedback (combining fuzzing with symex) may help prune

irrelevant paths. As AEG tools mature, refining path selection

will remain a key lever: it essentially encodes the “intuition” of

where bugs hide. By grounding those heuristics in theory and

empirical data (as in this analysis), we can better automate the

discovery and exploitation of security-critical bugs.

ACKNOWLEDGMENT

The author would like to express sincere gratitude to Dr.

Nur Ulfa Maulidevi, S.T, M.Sc. and Dr. Rinaldi Munir for

designing this paper assignment as a meaningful opportunity to

explore algorithmic strategies through research and

implementation.

The symbolic execution tools used in this paper, such as

KLEE and angr, have been instrumental in validating

theoretical findings through practical analysis. The author also

acknowledges Program Studi Teknik Informatika, STEI -

Institut Teknologi Bandung, for fostering a curriculum that

integrates technical depth with scientific communication.

REFERENCES

[1] M. Baldoni, G. Boella, V. Genovese, L. van der Torre, and S. Villata, "A
Survey of Symbolic Execution Techniques," arXiv preprint
arXiv:1610.00502, 2016.

[2] D. Brumley, P. Poosankam, D. Song, and J. Zheng, "Automatic patch-
based exploit generation is possible: Techniques and implications,"
Communications of the ACM, vol. 54, no. 5, pp. 63–71, 2011.

[3] R. Munir, "Algoritma BFS dan DFS (2025) Bagian 2," *Lecture Notes*,
Institut Teknologi Bandung. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-
BFS-DFS-(2025)-Bagian2.pdf

[4] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, "Unleashing
MAYHEM on Binary Code," 2012 IEEE Symposium on Security and
Privacy, pp. 380–394, 2012.

[5] R. Zhang, T. Wang, and S. Mitra, "Coppelia: End-to-End Automated
Exploit Generation for Validating the Security of Processor Designs,"
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

[6] A. Yao, D. Tian, L. Lu, and T. Kim, "StatSym: Vulnerable Path Discovery
through Statistics-Guided Symbolic Execution," 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 109–120.

[7] G. Pellegrino, C. Rossow, and D. Balzarotti, "SyML: Guiding Symbolic
Execution Toward Vulnerable States Through Pattern Learning,"
Proceedings of the 24th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2021.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 23 Juni 2025

Muhammad Aditya Rahmadeni dan 13523028

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-BFS-DFS-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/14-BFS-DFS-(2025)-Bagian2.pdf

